skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klessen, R S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. The study of molecular line emission is crucial to unveil the kinematics and the physical conditions of gas in star-forming regions. We use data from the ALMAGAL survey, which provides an unprecedentedly large statistical sample of high-mass star-forming clumps that helps us to remove bias and reduce noise (e.g., due to source peculiarities, selection, or environmental effects) to determine how well individual molecular species trace continuum emission. Aims. Our aim is to quantify whether individual molecular transitions can be used reliably to derive the physical properties of the bulk of the H2gas, by considering morphological correlations in their overall integrated molecular line emission with the cold dust. We selected transitions of H2CO, CH3OH, DCN, HC3N, CH3CN, CH3OCHO, SO, and SiO and compared them with the 1.38 mm dust continuum emission at different spatial scales in the ALMAGAL sample. We included two transitions of H2CO to understand whether the validity of the results depends on the excitation condition of the selected transition of a molecular species. The ALMAGAL project observed more than 1000 candidate high-mass star-forming clumps in ALMA band 6 at a spatial resolution down to 1000 au. We analyzed a total of 1013 targets that cover all evolutionary stages of the high-mass star formation process and different conditions of clump fragmentation. Methods. For the first time, we used the method called histogram of oriented gradients (HOG) as implemented in the toolastroHOGon a large statistical sample to compare the morphology of integrated line emission with maps of the 1.38 mm dust continuum emission. For each clump, we defined two masks: the first mask covered the extended more diffuse continuum emission, and the second smaller mask that only contained the compact sources. We selected these two masks to study whether and how the correlation among the selected molecules changes with the spatial scale of the emission, from extended more diffuse gas in the clumps to denser gas in compact fragments (cores). Moreover, we calculated the Spearman correlation coefficient and compared it with our astroHOG results. Results. Only H2CO, CH3OH, and SO of the molecular species we analyzed show emission on spatial scales that are comparable with the diffuse 1.38 mm dust continuum emission. However, according the HOG method, the median correlation of the emission of each of these species with the continuum is only ~24–29%. In comparison with the dusty dense fragments, these molecular species still have low correlation values that are below 45% on average. The weak morphological correlation suggests that these molecular lines likely trace the clump medium or outer layers around dense fragments on average (in some cases, this might be due to optical depth effects) or also trace the inner parts of outflows at this scale. On the other hand DCN, HC3N, CH3CN3and CH3OCHO are well correlated with the dense dust fragments at above 60%. The lowest correlation is seen with SiO for the extended continuum emission and for compact sources. Moreover, unlike other outflow tracers, in a large fraction of the sources, SiO does not cover the area of the extended continuum emission well. This and the results of the astroHOG analysis reveal that SiO and SO do not trace the same gas, in contrast to what was previously thought. From the comparison of the results of the HOG method and the Spearman correlation coefficient, the HOG method gives much more reliable results than the intensity-based coefficient when the level of similarity of the emission morphology is estimated. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. The physical mechanisms behind the fragmentation of high-mass dense clumps into compact star-forming cores and the properties of these cores are fundamental topics that are heavily investigated in current astrophysical research. The ALMAGAL survey provides the opportunity to study this process at an unprecedented level of detail and statistical significance, featuring high-angular resolution 1.38 mm ALMA observations of 1013 massive dense clumps at various Galactic locations. These clumps cover a wide range of distances (~2–8 kpc), masses (~102–104M), surface densities (0.1–10 g cm−2), and evolutionary stages (luminosity over mass ratio indicator of ~0.05 <L/M <450L/M). Here, we present the catalog of compact sources obtained with theCuTExalgorithm from continuum images of the full ALMAGAL clump sample combining ACA-7 m and 12 m ALMA arrays, reaching a uniform high median spatial resolution of ~1400 au (down to ~800 au). We characterize and discuss the revealed fragmentation properties and the photometric and estimated physical parameters of the core population. The ALMAGAL compact source catalog includes 6348 cores detected in 844 clumps (83% of the total), with a number of cores per clump between 1 and 49 (median of 5). The estimated core diameters are mostly within ~800–3000 au (median of 1700 au). We assigned core temperatures based on theL/Mof the hosting clump, and obtained core masses from 0.002 to 345M(complete above 0.23 M), exhibiting a good correlation with the core radii (M ∝ R2.6). We evaluated the variation in the core mass function (CMF) with evolution as traced by the clumpL/M, finding a clear, robust shift and change in slope among CMFs within subsamples at different stages. This finding suggests that the CMF shape is not constant throughout the star formation process, but rather it builds (and flattens) with evolution, with higher core masses reached at later stages. We found that all cores within a clump grow in mass on average with evolution, while a population of possibly newly formed lower-mass cores is present throughout. The number of cores increases with the core masses, at least until the most massive core reaches ~10M. More generally, our results favor a clump-fed scenario for high-mass star formation, in which cores form as low-mass seeds, and then gain mass while further fragmentation occurs in the clump. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Context.Stars form preferentially in clusters embedded inside massive molecular clouds, many of which contain high-mass stars. Thus, a comprehensive understanding of star formation requires a robust and statistically well-constrained characterization of the formation and early evolution of these high-mass star clusters. To achieve this, we designed the ALMAGAL Large Program that observed 1017 high-mass star-forming regions distributed throughout the Galaxy, sampling different evolutionary stages and environmental conditions. Aims.In this work, we present the acquisition and processing of the ALMAGAL data. The main goal is to set up a robust pipeline that generates science-ready products, that is, continuum and spectral cubes for each ALMAGAL field, with a good and uniform quality across the whole sample. Methods.ALMAGAL observations were performed with the Atacama Large Millimeter/submillimeter Array (ALMA). Each field was observed in three different telescope arrays, being sensitive to spatial scales ranging from ≈1000 au up to ≈0.1 pc. The spectral setup allows sensitive (≈0.1 mJy beam−1) imaging of the continuum emission at 219 GHz (or 1.38 mm), and it covers multiple molecular spectral lines observed in four different spectral windows that span about ≈4 GHz in frequency coverage. We have designed a Python-based processing workflow to calibrate and image these observational data. This ALMAGAL pipeline includes an improved continuum determination, suited for line-rich sources; an automatic self-calibration process that reduces phase-noise fluctuations and improves the dynamical range by up to a factor ≈5 in about 15% of the fields; and the combination of data from different telescope arrays to produce science-ready, fully combined images. Results.The final products are a set of uniformly generated continuum images and spectral cubes for each ALMAGAL field, including individual-array and combined-array products. The fully combined products have spatial resolutions in the range 800–2000 au, and mass sensitivities in the range 0.02–0.07M. We also present a first analysis of the spectral line information included in the ALMAGAL setup, and its potential for future scientific studies. As an example, specific spectral lines (e.g., SiO and CH3CN) at ≈1000 au scales resolve the presence of multiple outflows in clusters and will help us to search for disk candidates around massive protostars. Moreover, the broad frequency bands provide information on the chemical richness of the different cluster members, which can be used to study the chemical evolution during the formation process of star clusters. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. We present a comparison of the Milky Way’s star formation rate (SFR) surface density (∑SFR) obtained with two independent state-of-the-art observational methods. The first method infers ΣSFRfrom observations of the dust thermal emission from interstellar dust grains in far-infrared wavelengths registered in theHerschelinfrared Galactic Plane Survey (Hi-GAL). The second method determines ΣSFRby modeling the current population of O-, B-, and A-type stars in a 6 kpc × 6 kpc area around the Sun. We find an agreement between the two methods within a factor of two for the mean SFRs and the SFR surface density profiles. Given the broad differences between the observational techniques and the independent assumptions in the methods for computing the SFRs, this agreement constitutes a significant advance in our understanding of the star formation of our Galaxy and implies that the local SFR has been roughly constant over the past 10 Myr. 
    more » « less
  5. The interstellar medium in the Milky Way’s Central Molecular Zone (CMZ) is known to be strongly magnetised, but its large-scale morphology and impact on the gas dynamics are not well understood. We explore the impact and properties of magnetic fields in the CMZ using three-dimensional non-self gravitating magnetohydrodynamical simulations of gas flow in an external Milky Way barred potential. We find that: (1) The magnetic field is conveniently decomposed into a regular time-averaged component and an irregular turbulent component. The regular component aligns well with the velocity vectors of the gas everywhere, including within the bar lanes. (2) The field geometry transitions from parallel to the Galactic plane near ɀ = 0 to poloidal away from the plane. (3) The magneto-rotational instability (MRI) causes an in-plane inflow of matter from the CMZ gas ring towards the central few parsecs of 0.01−0.1 Myr−1that is absent in the unmagnetised simulations. However, the magnetic fields have no significant effect on the larger-scale bar-driven inflow that brings the gas from the Galactic disc into the CMZ. (4) A combination of bar inflow and MRI-driven turbulence can sustain a turbulent vertical velocity dispersion ofσɀ= 5 km s−1on scales of 20 pc in the CMZ ring. The MRI alone sustains a velocity dispersion ofσɀ≃ 3 km s−1. Both these numbers are lower than the observed velocity dispersion of gas in the CMZ, suggesting that other processes such as stellar feedback are necessary to explain the observations. (5) Dynamo action driven by differential rotation and the MRI amplifies the magnetic fields in the CMZ ring until they saturate at a value that scales with the average local density asB≃ 102 (n/103cm−3)0.33µG. Finally, we discuss the implications of our results within the observational context in the CMZ. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  6. The Milky Way’s Central Molecular Zone (CMZ) differs dramatically from our local solar neighbourhood, both in the extreme interstellar medium conditions it exhibits (e.g. high gas, stellar, and feedback density) and in the strong dynamics at play (e.g. due to shear and gas influx along the bar). Consequently, it is likely that there are large-scale physical structures within the CMZ that cannot form elsewhere in the Milky Way. In this paper, we present new results from the Atacama Large Millimeter/submillimeter Array (ALMA) large programme ACES (ALMA CMZ Exploration Survey) and conduct a multi-wavelength and kinematic analysis to determine the origin of the M0.8–0.2 ring, a molecular cloud with a distinct ring-like morphology. We estimate the projected inner and outer radii of the M0.8–0.2 ring to be 79″ and 154″, respectively (3.1 pc and 6.1 pc at an assumed Galactic Centre distance of 8.2 kpc) and calculate a mean gas density >104cm−3, a mass of ~106M, and an expansion speed of ~20 km s−1, resulting in a high estimated kinetic energy (>1051erg) and momentum (>107Mkm s−1). We discuss several possible causes for the existence and expansion of the structure, including stellar feedback and large-scale dynamics. We propose that the most likely cause of the M0.8–0.2 ring is a single high-energy hypernova explosion. To viably explain the observed morphology and kinematics, such an explosion would need to have taken place inside a dense, very massive molecular cloud, the remnants of which we now see as the M0.8–0.2 ring. In this case, the structure provides an extreme example of how supernovae can affect molecular clouds. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  7. Context. A large fraction of stars form in clusters containing high-mass stars, which subsequently influences the local and galaxy-wide environment. Aims. Fundamental questions about the physics responsible for fragmenting molecular parsec-scale clumps into cores of a few thousand astronomical units (au) are still open, that only a statistically significant investigation with ALMA is able to address; for instance: the identification of the dominant agents that determine the core demographics, mass, and spatial distribution as a function of the physical properties of the hosting clumps, their evolutionary stage and the different Galactic environments in which they reside. The extent to which fragmentation is driven by clumps dynamics or mass transport in filaments also remains elusive. Methods. With the ALMAGAL project, we observed the 1.38 mm continuum and lines toward more than 1000 dense clumps in our Galaxy, withM≥ 500 M, Σ ≥ 0.1 g cm−2andd≤ 7.5 kiloparsec (kpc). Two different combinations of ALMA Compact Array (ACA) and 12-m array setups were used to deliver a minimum resolution of ∼1000 au over the entire sample distance range. The sample covers all evolutionary stages from infrared dark clouds (IRDCs) to H IIregions from the tip of the Galactic bar to the outskirts of the Galaxy. With a continuum sensitivity of 0.1 mJy, ALMAGAL enables a complete study of the clump-to-core fragmentation process down toM∼ 0.3 Macross the Galaxy. The spectral setup includes several molecular lines to trace the multiscale physics and dynamics of gas, notably CH3CN, H2CO, SiO, CH3OH, DCN, HC3N, and SO, among others. Results. We present an initial overview of the observations and the early science product and results produced in the ALMAGAL Consortium, with a first characterization of the morphological properties of the continuum emission detected above 5σin our fields. We used “perimeter-versus-area” and convex hull-versus-area metrics to classify the different morphologies. We find that more extended and morphologically complex (significantly departing from circular or generally convex) shapes are found toward clumps that are relatively more evolved and have higher surface densities. Conclusions. ALMAGAL is poised to serve as a game-changer for a number of specific issues in star formation: clump-to-core fragmentation processes, demographics of cores, core and clump gas chemistry and dynamics, infall and outflow dynamics, and disk detections. Many of these issues will be covered in the first generation of papers that closely follow on the present publication. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  8. Nitrogen hydrides such as NH3 and N2H+ are widely used by Galactic observers to trace the cold dense regions of the interstellar medium. In external galaxies, because of limited sensitivity, HCN has become the most common tracer of dense gas over large parts of galaxies. We provide the first systematic measurements of N2H+ (1-0) across different environments of an external spiral galaxy, NGC 6946. We find a strong correlation (r > 0.98, p < 0.01) between the HCN (1-0) and N2H+ (1-0) intensities across the inner ∼8 kpc of the galaxy, at kiloparsec scales. This correlation is equally strong between the ratios N2H+ (1-0)/CO (1-0) and HCN (1-0)/CO (1-0), tracers of dense gas fractions (fdense). We measure an average intensity ratio of N2H+ (1-0)/HCN (1-0) = 0.15 ± 0.02 over our set of five IRAM-30m pointings. These trends are further supported by existing measurements for Galactic and extragalactic sources. This narrow distribution in the average ratio suggests that the observed systematic trends found in kiloparsec-scale extragalactic studies of fdense and the efficiency of dense gas (SFEdense) would not change if we employed N2H+ (1-0) as a more direct tracer of dense gas. At kiloparsec scales our results indicate that the HCN (1-0) emission can be used to predict the expected N2H+ (1-0) over those regions. Our results suggest that, even if HCN (1-0) and N2H+ (1-0) trace different density regimes within molecular clouds, subcloud differences average out at kiloparsec scales, yielding the two tracers proportional to each other. 
    more » « less
  9. We present new HCN and HCO+(J= 3–2) images of the nearby star-forming galaxies (SFGs) NGC 3351, NGC 3627, and NGC 4321. The observations, obtained with the Morita ALMA Compact Array, have a spatial resolution of ∼290–440 pc and resolve the innerRgal ≲ 0.6–1 kpc of the targets, as well as the southern bar end of NGC 3627. We complement this data set with publicly available images of lower excitation lines of HCN, HCO+, and CO and analyse the behaviour of a representative set of line ratios: HCN(3–2)/HCN(1–0), HCN(3–2)/HCO+(3–2), HCN(1–0)/CO(2–1), and HCN(3–2)/CO(2–1). Most of these ratios peak at the galaxy centres and decrease outwards. We compare the HCN and HCO+observations with a grid of one-phase, non-local thermodynamic equilibrium (non-LTE) radiative transfer models and find them compatible with models that predict subthermally excited and optically thick lines. We study the systematic variations of the line ratios across the targets as a function of the stellar surface density (Σstar), the intensity-weighted CO(2–1) (⟨ICO⟩), and the star formation rate surface density (ΣSFR). We find no apparent correlation with ΣSFR, but positive correlations with the other two parameters, which are stronger in the case of ⟨ICO⟩. The HCN/CO–⟨ICO⟩ relations show ≲0.3 dex galaxy-to-galaxy offsets, with HCN(3–2)/CO(2–1)–⟨ICO⟩ being ∼2 times steeper than HCN(1–0)/CO(2–1). In contrast, the HCN(3–2)/HCN(1–0)–⟨ICO⟩ relation exhibits a tighter alignment between galaxies. We conclude that the overall behaviour of the line ratios cannot be ascribed to variations in a single excitation parameter (e.g., density or temperature). 
    more » « less
  10. null (Ed.)